در تحلیل رگرسیونی مطالعه مباحث تشخیصی شامل تعیین مشاهدات مؤثر و نقاط پرت از اهمیت ویژه ای برخوردار است. حساسیت روش کمترین توان های دوم نسبت به حضور مشاهدات مؤثر و داده های پرت در مدل موجب شد که گامی در جهت توسعه مباحث تشخیصی به منظور ارائه معیارهایی برای اندازه گیری تأثیر و شدت وابستگی به این مشاهدات برداشته شود. تعیین مشاهدات مؤثر و نقاط پرت در داده ها، زمانی که متغیرهای مستقل همخطی داشته باشند، بسیار پیچیده و مشکل است و خصوصاً اینکه حضور همخطی می تواند برخی از داده های غیرعادی را پوشش دهد. یکی از روش های مورد توجه برای تعیین مشاهدات پرت، روش انتقال میانگین است. در این مقاله، روش انتقال میانگین را برای برآوردگر ریج تحت محدودیت های خطی تصادفی؛ که به منظور کاهش اثر همخطی استفاده شده، تعمیم داده و برای این برآوردگر آماره آزمون جهت شناسایی مشاهدات پرت ارائه خواهد شد. در نهایت توانایی این روش را با استفاده از یک مثال کاربردی از داده های واقعی نشان داده می شود.